
1

The Gamma: Programing tools for transparent data journalism

Tomas Petricek

Computer Laboratory, University of Cambridge
Cambridge, United Kingdom

tomas@tomasp.net

ABSTRACT
Data journalism encourages reader interaction. This is often done

through simple user interfaces. For more advanced readers, there is

typically a download with the raw data behind the visualization.

However, there is an interesting gap between the two. What if the

reader wants to change a parameter of a visualization that is not

exposed through the user interface? What if they want to re-create

the same visualization, but using data from a different source?

We believe that the fundamental reason for this inflexibility is

the fact that accessing data and building interactive visualizations

is a difficult programming problem. As a result, data journalists use

a wide range of tools, often involving manual steps, which makes

it hard to publish the entire process as a reproducible program.

In this paper, we present The Gamma, a project that reduces

the number of steps needed to link a data source to an end-user

visualization. The Gamma uses programming language techniques

to make data sources easier to access and to automatically build

user interfaces that let readers modify parameters of visualizations.

But behind the visualization and the user interface, there is full

source code, which makes reports transparent, more reproducible

and more accountable.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Interactive environments

General Terns
Languages, Documentation, Experimentation

1. INTRODUCTION
Let us start with an example. Consider a simple data-driven report

that uses data from the World Bank to compare CO2 emissions of

different countries. The typical way to build such report is to

download data for the indicator by hand or using a simple script

that calls the World Bank API, save it to a file, share it as a Google

Sheet and use a charting library to produce a map with an overlay.

In a more interactive example, we could download data for multiple

years and let the reader choose two years for comparison.

This approach has a number of issues. First of all, we can easily

make a mistake in any of the manual steps and get data for a wrong

indicator or a wrong year. The reader has no way to verify this.

Second, the reader has only very limited options for interacting with

the report. They can compare the pre-defined years (using our user

interface) or they can download the data and build different visuali-

zations (using our data). However, what if the reader wanted to get

data for a different year or compare different indicator also exposed

by the World Bank (e.g. CO2 per capita rather than total CO2)?

For simple changes, the reader should be able to use the user

interface. For more complex changes, the reader might need be able

to modify the source code, but they should still be able to reproduce

the report and obtain a similar interactive visualization as the result.

By examining the source code, the reader should be also able to

verify what data sources are used by the visualization.

The goal of The Gamma project is to make the above scenarios

possible. This is done by taking the code behind data journalism as

the fundamental aspect and building programming tools on top of

it. The key ideas presented in this paper are:

 A report is just text with source code that can be executed to

produce visualizations (Section 2.1). The reader initially sees

the final product, but they can change options through user

interface or even view the underlying source code.

 The data sources are mapped into the programming environ-

ment using type providers (Section 2.2). This makes it possible

to access data with complex structure directly from the code.

 When editing the code, a rich editor provides auto-completion

and other help (Section 2.3), hiding much of the usual com-

plexity behind data access and making basic changes easy.

 The Gamma automatically generates user interface that lets the

reader change parameters of the visualization based on the

source code that was used to build it (Section 2.4).

The Gamma prototype is created using F# and is available as open

source: https://github.com/tpetricek/TheGamma. A sample report

on carbon emissions can be found at http://thegamma.net/carbon.

2. THE GAMMA PROJECT
Data journalism not only adds a new perspective to reporting, but

it also changes the media formats. The Gamma project takes this

development further and treats data-driven article not as text with

additional content such as photographs or visualizations, but as a

literate program [6]. That is, a mix of plain text and program code.

The article that the reader sees then becomes just (one possible)

view or rendering of the program execution.

This is perhaps just a philosophical shift, but it has a number

of important implications. We can provide multiple different views

of the same source – the raw text and the article with the final visu-

alizations are just two of those. A program should be self-contained

and have clear dependencies. That is, we know exactly what is

needed to re-run the code and obtain the report. Finally, seeing a

report as program also lets us use a number of interesting program-

ming language research techniques that can make reporting easier,

faster and less error-prone. Computation+Journalism Symposium 2015, New York

This work is licensed under the Creative Commons Attribution License.

https://github.com/tpetricek/TheGamma
http://thegamma.net/carbon

2

2.1 Data-driven article as a literate program

Let us return to the example of visualizing CO2 emissions using

data from the World Bank. The following small (but complete)

literate program produces two charts with brief commentary, as

shown in Figure 1.

Carbon emissions today

If we look at CO2 emissions for the whole world we can
see that China and US are the largest polluters
followed by India, Russia and rich western countries:

 let co2 = world.byYear
 .``2010``.``Climate Change``
 .``CO2 emissions (kt)``

 let colorScale = ["#6CC627"; (...)]
 chart.geo(co2).colorAxis(colors=colorScale).show()

If we look at the share of CO2 emissions for indivi-
dual countries, we can see that China, US and India
are responsible for a half of the world's CO2:

 let co2 = world.byYear
 .``2010``.``Climate Change``
 .``CO2 emissions (kt)``.sortValues(reverse=true)

 let sumRest = co2.skip(6).sum()
 let topAndRest = co2.take(6)
 .append("Other countries", sumRest)
 chart.pie(topAndRest).show()

The Gamma uses the F# language [10] for embedded code snippets

and the Markdown format for text. F# is statically typed, so for ex-

ample, the type of co2 is series<string, float>, which represents

a collection of numerical values indexed by strings (country

names). The only F# keyword in the example is let, which defines

a variable. Also note that types are not written explicitly in the code

and are inferred automatically.

The first interesting aspect of the example is the data access.

The world identifier is a global value that provides access to World

Bank data. In F#, the “.” operator is used (as usual) to access a

member of an object and `` is used to escape identifiers that contain

characters such as spaces and numbers.

When writing the code, authors or readers do not need to know

full name of indicators and countries, because the editor provides

auto-completion on the names (Section 2.3). The world object is

also not a predefined construct that would have to be created ma-

nually. Instead, it is provided (Section 2.2) based on the schema

information exposed by the World Bank.

Although the example used here is quite simple, it shows that

the code can do more than just link an indicator to a chart. The first

example also specifies a color scale (part of the list is omitted here).

The second example partitions the data taking the 6 largest polluters

and adding sum of all other countries as another item.

As discussed in Section 2.4, the produced visualization is not a

static chart. The Gamma understands the source code and generates

user interface for some of the parameters (in this example, letting

the user change the year and the indicator). However, the reader can

see the full source code, make changes that are not exposed through

the user interface (say, change the color scheme or the number of

countries shown in the pie chart), refresh the view and immediately

see the new visualization.

2.2 Data access with type providers

The Gamma makes data available through type providers [9, 2].

The World Bank type provider (accessible via world) is a good

example of the mechanism, but it is just one specific case. Type

providers can similarly be used to access RESTful services, Excel

spreadsheets, CSV files and other sources. Section 3.1 discusses a

number of other possible uses within The Gamma.

F# type providers. A type provider is a compiler extension that

generates types (with members) based on an external data source.

To do so, a type provider can run arbitrary code (in case of World

Bank, it calls the API to get information about the schema of the

data source). The generated types define the structure (i.e. the chain

of members that can be used to access the data) and the runtime

code to be executed to get the data. In The Gamma, the runtime

code is then translated to JavaScript and executed in the web

browser when a report is opened or when the reader makes a change

to the source code.

The most interesting aspect of a type provider is how it maps

the external data source to members visible to the F# code. This is

easy for a CSV file, but data sources like the World Bank have rich

structure that can be mapped in a number of ways.

World Bank type provider. The World Development Indicators

exposed by World Bank store data indexed along three axes –

indicators, countries and years. In the above example, we choose a

year together with an indicator and obtain data for all countries.

This is one possible projection. For other visualizations, we may

want to obtain data for all years (given a specific country and

indicator) to show the change over time.

Figure 1. Two visualizations produced by running a sample program

3

The world type provider available in The Gamma prototype

supports the following two ways of accessing data:

world.byYear.[Year]
 .[Indicator group].[Indicator name]

world.byCountry.[Country name]
 .[Indicator group].[Indicator name]

In both cases, we specify two of the three possible keys and obtain

a series that returns values indexed by the third key (by country in

the first case and by year in the second case).

The [Year] and [Country name] placeholders stand for one of

the 65 years (1950 … 2015) available in the data source and one of

the 230 countries. The World Bank exposes over 3000 indicators

and to make navigation easier, the type provider groups them by

indicator category (although there is also ``All indicators``

member that provides access to all of them in a flat structure). As

mentioned before, navigating through the data source is possible

thanks to the rich editor support, which we discuss next.

2.3 Editor support for data navigation

In the reading view of a report (Figure 1), there is a small “source”

button attached to every visualization. This is where the more ad-

vanced readers can access the source code shown in the previous

section and edit it or create their own visualizations.

The editor makes writing and changing code easier by provi-

ding tools known from IDEs for (mostly) statically-typed object-

oriented languages, but adapted to the data-focused environment.

The Figure 2 shows two of the tools using a code sample that

creates a list of countries (e.g. to appear in a line chart that compares

the top 5 polluters over the last 50 years).

The completion list is using the F# Compiler Service1 to parse

the source code, infer the types and offer members that are available

on the type of the expression being typed. In the example, the type

of world.byCountry is provided by a type provider and has a mem-

ber for each country tracked by the World Bank.

The panel on the right shows information about the currently

selected completion. The information is, again, obtained from the

type. Each member can have a documentation and The Gamma

1 A standard component used in other F# tools available at:
http://fsharp.github.io/FSharp.Compiler.Service

supports showing rich HTML in the documentation. The World

Bank type provider shows documentation for countries (containing

basic statistics and a map) and for indicators (containing full des-

cription of the indicator). Note that this is not a built-in functiona-

lity of The Gamma project, but rather a feature of the World Bank

type provider. Other data sources that can be integrated into The

Gamma can provide different information (or even interactive

content) using the exact same mechanism.

Finally, it is worth adding that the two uses of the static types

to provide better tooling described here are just scratching the sur-

face of what is possible. Section 3.2 discusses future directions.

2.4 Generating interactive user interfaces

The editor tooling makes modifications to the source code easier,

but we do not expect that every reader who wants to interact with

data-driven articles should be able to modify the source code.

The Gamma also provides a simple user interface that lets the

readers change parameters of the visualization. This does not requi-

re additional input from the author – the user interface is generated

automatically using the information from type providers and from

the source code.

To see how the mechanism work, consider the following code

snippet that obtains CO2 emissions for 3 countries specified expli-

citly in a list and creates a line chart comparing them (the high-

lighted parts are discussed below):

let topCountries =
 [world.byCountry.China
 world.byCountry.India
 world.byCountry.``United States``]

let growths =
 topCountries.map(fun p ->
 p.``Climate Change``.``CO2 emissions (kt)``
 .set(seriesName=p.name))

chart.line(growths).show()

Figure 3 shows the result of the visualization together with the user

interface that appears when the reader clicks the “options” button.

It includes two elements that correspond to specific patterns in the

source code (highlighted above). A drop-down lets the reader

change the indicator (highlighted in green) in order to view, for

example, CO2 emissions per capita or Energy consumption. A

multi-select lets the reader add and remove countries in the list

(highlighted in orange). The user interface is linked to the source

code (even when it is hidden), meaning that changes in the user

interface change the source code (and vice versa), which is then re-

run to obtain a modified visualization.

Before discussing the two specific patterns, it is worth noting

that the underlying mechanism relies on the same underlying infor-

mation as the code editor. This can be seen in Figure 3, where the

user is choosing countries and sees the same information panel with

country details as in Figure 2.

Choosing one of several properties. In case of the drop-down, we

look for a simple code pattern that looks as follows:

<ident1>.(...).<identn-1>.<identn>

Figure 2. Choosing countries with auto-complete and information side-panel

http://fsharp.github.io/FSharp.Compiler.Service

4

Next, we obtain the inferred type of <ident1>.(...).<identn-1>.

This is our parent type. The parent type has <identn> as one of its

members. We also obtain the type of this member and we find all

other members of the parent type that have the same type as the one

member. Those are then made available in the drop-down. Since all

the offered identifiers are members of the parent type and have the

same type, they can be safely substituted in the source code.

In the example shown here, the parent type is the object

returned by p.``Climate Change``, which represents a category of

indicators and has specific indicators as its members. The type of

``CO2 emissions (kt)`` is then series<int, float> representing

a time-series. The user interface thus exposes all other numerical

indicators belonging to the climate change category.

Choosing a list of items. The second user interface component

works in a very similar way. It looks for a more complex pattern:

[<ident1>.(...).<identn>.<option1>
 <ident1>.(...).<identn>.<option2>
 (...)
 <ident1>.(...).<identn>.<optionm>]

Note that the elements of the list would also match the pattern dis-

cussed above. For this reason, editors for lists are always preferred.

As above, we check that all the options are members of the same

parent type and generate an editor that lets the reader choose one or

more elements from the available members (again, we also offer

only members of a single type).

The two editors discussed here are just two examples of a more

general mechanism. It is easy to imagine other editors that could be

built in the same way. For example, a specialized UI element could

be built for a list of colors or for numerical constants.

The two examples discussed here should be a sufficient de-

monstration of the general mechanism. The key idea is that if we

treat the report as a program, we can use (mostly standard) prog-

ramming language techniques to build powerful user interfaces that

are not tied to a specific visualization, but instead work with any

report created using The Gamma.

3. FUTURE AND RELATED WORK
The Gamma project combines ideas from programming language

research with the perspective of data journalism (cf. [4]). Important

prior work has been on both sides, but to our best knowledge, the

idea of treating report as a program (and building programming

tools on top of that) is new in The Gamma.

The project is currently an early prototype and there is much

more that could be done on both the data-access side (creating new

type providers) and the tooling side (using the source code in other

interesting ways).

3.1 Type providers and data sources

The examples discussed in this paper use World Bank as the data

source. Creating similar single-purpose type providers for other

data sources with a REST API requires advanced F# programming

skills, but it brings no fundamental difficulty and we intend to add

additional data sources in the future.

Another approach for creating type providers is to build a pro-

vider for a format rather than a specific source. The Gamma sup-

ports this style for the JSON format. The following can be used to

get country codes from the World Bank using the API directly:

type countryResponse =
 json<"http://api.worldbank.org/country?format=json">

let data = countryResponse.wrap(json)
let codes = data.array
 .filter(fun a -> a.region.id <> "NA")
 .map(fun a -> a.iso2Code)

The first line invokes the JSON type provider with a sample URL.

This produces a type with members based on the sample document

which is then used to read a json value and access its members such

as id and iso2code. The important fact is that the members are

known to the editor – and so it can provide similar help as when

choosing countries or indicators.

The same approach can be used for other formats. The F# Data

library [7, 8] supports CSV, JSON, XML and embedded HTML

tables. In the context of data journalism, this approach could be

used to provide access to Excel, Google Sheets and other frequently

used data formats. This approach can also be useful for data that are

either obtained offline, or require significant amount of manual pre-

processing that cannot be easily captured in reproducible code.

Finally, building a type provider for large-scale data sources

such as http://data.gov and http://data.gov.uk is an interesting open

problem. There has been some work done on adding more structure

to the data [3], but more research is needed before it can be accessed

with the same ease as the World Bank data sets used here.

3.2 Getting more from the program

In The Gamma prototype, we use code analysis of the source pro-

gram to automatically generate user interfaces for visualizations

(and to provide usual editor tooling). However, there is a number

of other techniques from programming language research that

could be adapted and used for data journalism. To list a few:

 Automatic data citations. Analyzing the source code and type

providers used makes it possible to automatically find out what

data sources were used in the article. Programming languages

can also automatically track data provenance [1] to asses what

aspects of the report depend on what data sources (for example,

what remains valid if one unverified data source is incorrect?)

Figure 3. User interface for configuring a sample visualization.

http://data.gov/
http://data.gov.uk/

5

 Numerical values in context. When a report shows a numeri-

cal value (CO2 emissions of Czech Republic are 111,168 kt),

it is hard to understand what the number means without

context. As The Gamma knows the source of the number, it can

automatically generate comparison and, for example, display

an information panel with other countries in the same region.

Tracking such information is closely related to the tracking of

physical units that is available in F# [5].

3.3 Background and related work

The Gamma prototype uses many of the common tools and libraries

from the F# community including F# Compiler Service2 for code

analysis; the source code editor is based on the F# Web IntelliSen-

se3 project and the browser execution uses FunScript4 to produce

JavaScript visualizations. The idea of rich information panel (e.g.

showing country details) is inspired by Tsunami5.

The work on type providers for JSON and the World Bank is

inspired by earlier work of the author on F# Data library. Finally,

the idea of mixing source code with text goes back to literate pro-

gramming of Donald Knuth [6]. The model presented here is sim-

ple, but other work on literate programming suggests a number of

possible extensions.

5. CONCLUSIONS
In this paper, we present The Gamma – a tool that aims to make

data-driven articles more transparent, reproducible and accounta-

ble. The key design principle behind The Gamma is that the media

format of data-driven articles is no longer text with embedded pho-

tographs and visualizations, but instead a program.

This changes a number of basic assumptions about data-driven

reports. First, programs should be self-contained and recreating the

report should thus require no manual steps. Second, the program

can be viewed and interacted with in multiple ways. Third, we can

use programming language techniques to build a number of tools

on top of such data-driven articles.

When interacting with The Gamma, the reader initially sees the

final text with rendered visualizations. Next, they can change para-

meters of the visualizations (through an automatically generated

user interface). Finally, the reader also has access to the source code

behind the report. This makes it possible to change remaining

parameters, but also verify what data sources are accessed and how.

2 http://fsharp.github.io/FSharp.Compiler.Service
3 https://github.com/BayardRock/FSharpWebIntellisense

REFERENCES
[1] J. Cheney, et al. Provenance: a future history. Proceedings of

OOPSLA. ACM, 2009.

[2] D. R. Christiansen. Dependent type providers. In

Proceedings of Workshop on Generic Programming, 2013.

[3] Li Ding, et al. TWC data-gov corpus: incrementally gene-

rating linked government data from data.gov. In Proceedings

of the 19th conference on World Wide Web. ACM, 2010.

[4] J. Gray, L. Chambers, L. Bounegru. The data journalism

handbook. ISBN 978-1449330064. O'Reilly, 2012.

[5] A. Kennedy. Types for units-of-measure: Theory and

practice. Central European Functional Programming School.

Springer Berlin Heidelberg, 2010. 268-305.

[6] D. Knuth. Literate programming. The Computer Journal

27.2, 97-111, 1984.

[7] T. Petricek, G. Guerra, and contributors. F# Data: Library

for data access, 2015. http://fsharp.github.io/FSharp.Data

[8] T. Petricek, G. Guerra, D. Syme. F# Data: Making

structured data first-class citizens. Draft available at:

http://tomasp.net/academic/drafts/fsharp-data

[9] D. Syme et al. Themes in information-rich functional

programming for internet-scale data sources. In Proceedings

of the DDFP Workshop, 2013

[10] The F# Software Foundation (FSSF). The F# language.

Available online at http://www.fsharp.org, 2015

4 http://funscript.info
5 http://tsunami.io

http://fsharp.github.io/FSharp.Compiler.Service
https://github.com/BayardRock/FSharpWebIntellisense
http://fsharp.github.io/FSharp.Data/
http://tomasp.net/academic/drafts/fsharp-data
http://www.fsharp.org/
http://funscript.info/
http://tsunami.io/

